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　　Abstract　　DNA computing is a new vista of computation , w hich is of biochemical type.Since each piece of information is encoded

in biological sequences , their design is crucial for successful DNA computation.DNA sequence design is involved w ith a number of design

cri teria , w hich is dif ficult to be solved by the t raditional opt imizat ion methods.In this paper , the multi-objective carrier chaotic evolu tion

algorithm (MCCEA)is int roduced to solve the DNA sequence design p roblem.By merging the chaotic search base on power function car-
rier , a set of good DNA sequences are generated.Fu rthermore , the simulat ion result s show the eff iciency of our method.
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　　DNA computing is a new computat ion paradigm ,
where the information is encoded by DNA sequences.
In 1994 , Adleman[ 1] firstly demonst rated the feasibil-
ity of solving NP-complete problems by DNA

molecules.Because DNA computing has many good

characteristics such as massive parallelism , exception-
al energy ef ficiency , and huge storage density , DNA
computing has been extensively investigated , for ex-
ample, it has been used to solve NP-complete prob-
lems[ 2—4] .Since the information in DNA computing

is encoded by DNA sequences , the design of DNA se-
quences is crucial fo r successful DNA computation.
For a set of DNA sequences being effective in DNA

computing , they must fulfill a number of combinato-
rial and thermodynamic const raints , which is difficult

to be solved by the t raditional optimization methods.

Many researchers have proposed various algo-
rithms and methods for the reliable DNA sequence de-
sign.For example , Marathe et al.[ 5] proposed a dy-
namic prog ramming approach;Frutos et al.

[ 6]
pro-

posed a template st rategy to select a huge number of

dissimilar sequences;Aritha et al.[ 7] introduced ge-
netic algorithm into DNA sequences design system

and proposed a random generate-and-test algorithm;
Tanaka et al.[ 8] applied simulated annealing to opti-
mize the set of DNA sequences;Deaton et al.[ 9] pro-

posed DNA sequences design algorithm based on evo-
lutionary search method;Cui et al.

[ 11]
proposed DNA

sequences design algo rithm based on the PSO opt i-
mization;Wang et al.[ 15] developed GA/SA alg o-
rithm fo r DNA sequences design.

Chaos is a universal nonlinear phenomenon , and
has the characteristics of the ergodicity , randomicity

and regularity .In this paper , the carrier chaotic

search w as merged into multi-objective evolutionary

algorithm , and a multi-objective carrier chaotic evolu-
tionary alg orithm (MCCEA)for designing DNA se-
quences was developed.In each generation of M C-
CEA algorithm , carrier chaotic search was performed

on the copy of several individuals chosen randomly

f rom the ex ternal archive to obtain new non-dominat-
ed solutions.More non-dominated solutions w ere pro-
duced by ergodic regularity of chaos.Compared w ith

the t raditional algo rithm , such as PSO algorithm[ 11] ,
GA/SA algorithms

[ 15]
, and w eight methods

[ 12]
, our

algorithm not only avoids the dif ficulty of selecting

the proper weight values fo r each criterion and escap-
ing from local opt imal solution , but also produces a

set of alternative solutions but a sing le optimal solu-
tion.The simulation results show that the compre-
hensive performance of multi-objective carrier chaotic

evolut ionary algorithm is improved by merging chaos



in MOEA algorithm.

1　Constraints formulation in DNA sequences

design

In DNA computing , DNA sequences should not

form any undesired secondary st ructures and must

meet some physical , chemical and log ical constraints

in order to avoid mishybridizat ion.Generally , the

const raints such as H-measure , cont inuity , melting

temperature , and GC content , need to be considered

in the design of good DNA sequences.In this section ,
first , the various constraints fo r DNA sequences de-
sign w ill be described in detail.Then DNA sequences

design problem w ill be formulated as a multi-objective
optimization problem .

In the follow ing context , x i(1≤i≤m), x j(1
≤j≤m)are used to denote the DNA sequences with

leng th n , and m is the cardinality of a set of DNA

sequences.For convenience , DNA sequence x is ori-
ented f rom 5′to 3′end , and the reverse orientation is

the 3′to 5′.Waston-Crick complement of a sequence

x is denoted by  x , and x
R
denotes the reverse se-

quence of sequence x .

1.1　Design constraints

1.1.1　Hamming distance constraint

Hamming distance H(x i , xj)of two DNA se-
quences x i and x j is the number of corresponding

places w here tw o characters are dif ferent.In DNA

sequences design , Hamming distance w ill ensure that

each sequence is as nonsimilar as possible.The evalu-
ation function fHam(i)of the Hamming distance con-

st raint is defined as

fHam(i)= min
1≤j≤m , j ≠i

{H(x i , xj)} (1)

1.1.2　GC content const raint

The GC content is the percentage of G and C in

a DNA sequence.GC content affects the chemical

properties of DNA and can reduce the probability of

occurring non-specif ic hybridization effect ively .The
evaluation function f GC(x i)of the GC content con-
st raint is described as follow s:

f GC(x i)=[GCgen(xi)-GC tar(xi)]
2
(2)

where GC tar(xi)is the target GC content of DNA se-
quence xi , and GCgen(x i)is the GC content of the

generated sequence.

1.1.3　Tm const raint

Melting temperature is one of the most impor-
tant factors fo r the DNA sequence design.There are

many methods to calculate melting temperature such

as the GC% method
[ 13]
, and the nearest neighbor

mode[ 14] .We use the GC%method to calculate melt-
ing temperature in this study.The evaluation func-
tion f Tm(x i)of melting temperature is defined as

f Tm(xi)=[ Tmtar(xi)-Tmgen(xi)]
2
(3)

Tm(x i)=81.5+16.6×log10
[ salt]

1.0 +0.7×[ salt]

+41×GC%-
500
|x i|

(4)

where Tm tar is the target melting temperature , and
Tmgen is the target melting temperature of the gener-

ated sequence xi , [ salt ] is salt concentrat ion and

 xi is the length of DNA sequence xi.

1.1.4　Reverse constraint

The Hamming distance H(xi , x
R
j )betw een x i

and x
R
j should not be lower than a given parameter.

The formulation f Rev(xi)of the reverse constraint is

defined as follow s
[ 15]
:

f Rev(xi)= min
1≤j≤m

{H(xi , x
R
j)} (5)

1.1.5　Continui ty const raint

In a sequence , if the same bases occur continu-
ously , it may cause unexpected biological structures.
Continuity is of ten used to describe the degree of suc-
cessive occurrence of the same base in a sequence.

The formulation is defined as follows
[ 16]
:

F con(΢)=∑
n

i =1
f con(x i), f con(x)

= ∑
L-t+1

i=1
∑
α∈ Λ

T(Cα(x , i), t)
2

(6)

Cα(x , i)=

c , if there is c such that xi ≠α,

x i+j =α, for 1 ≤ j ≤ c ,

x i+j+1 ≠α

0 , otherwise

(7)

T(i , j)=
i , if i > j

0 , otherw ise
(8)

where Cα(x , i)is the number of the i th base αoc-
curring continuously in DNA sequence x , and t is the

target continuity .
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1.1.6　Reverse complement const raint

Reverse complement const raint can reduce the

probability of occurring non-specific hybridization

w ith the reverse-complement of other sequences.The
formulat ion f RC (xi) of reverse complement con-
st raint is defined as

f RC(x i)= min
1≤j ≤m

{H(x i , x
R
j)} (9)

1.2　Multi-objective problem for DNA sequence de-
sign

DNA computing relies on biochemical reactions

of DNA molecules and may result in incorrect o r un-
desired secondary structures.Therefo re , DNA se-
quences must meet some physical , chemical and logi-
cal constraints in order to avoid mishybridization.
Generally , the const raints such as H-measure , conti-
nuity , melting temperature , and GC content , need to

be considered and each const raint function needs to be

optimized simultaneously .Obviously , the optimiza-
tion problem of the const raint function can be formu-
lated as multi-objective optimization problem.For-
mally , the DNA sequences design problem can be

w rit ten as follow s:

Optimize

{fHam(xi), f Rev(x i), fGC(xi),

　f Con(xi), f Tm(x i), f RC(xi)} (10)

　　The nex t section will describe in detail how to

solve the multi-objective problem for DNA sequence

design by mult i-objective carrier chaotic evolut ionary

algori thm .

2　Multi-objective carrier chaotic evolution-
ary algorithms

2.1　Carrier chaotic opt imization

Chaos is a kind of nonlinear phenomenon that

w idely occurs in nature.Because of the characteristics
of chaot ic mot ion such as the ergodicity , randomicity

and regularity , the chaotic optimizat ion can get rid of

the local optimal solution.So the chao tic search has

been int roduced into the various optimization algo-
rithms , such as chao tic neural netwo rk[ 17] , chaotic
simulated annealing algorithm

[ 18]
, and mutat ive scale

chaotic optimization alg orithm[ 19] .In this paper , we
w ill introduce chao tic search into the multi-objective
evolutionary algo rithm , which is used to solve DNA

sequence design problem .

The mathematical expression of the logistical

mapping is given as follow s:
xn+1 =μ×x n(1- xn), 　for n =0 ,1 , …

μ∈ [ 0 ,4] , 　xn ∈ [ 0 ,1] (11)

where μis the g row th rate , and x 0 is the init ial val-
ue.If μ=4 , the system is of fully chaotic state.

The Logistic mapping has the advantage of er-
godicity , but the probability density of logistic map-
ping o rbi t dist ributes ununifo rmity , and chaos search-
es mainly on the edge of the searching field.So power

function carrier is proposed as follow s:

zn =

x
p
n , if xn ∈ [ 0 , a]

x n , if xn ∈ [ a , b]

x
q
n , if xn ∈ [ b , 1]

(12)

where 0<a <b <1 , 0 <p <1 , q >1 , xn is the

chaot ic variable produced by Eq.(11), and z n is a

new chaotic variable produced by pow er function.In
this study , a is 0.35 , b is 0.7 , p is 0.6 , and q is

3.

Obviously , z n also has the characteristics of the

ergodicity in [ 0 , 1] , and it is proved that the power

function carrier can g reat ly enhance the g lobal and lo-
cal searching ability of the chaotic optimization[ 20] .

2.2　Multi-objective evolutionary algorithm

Evolutionary algorithms have been proved to be

well suited for optimization problems w ith multiple

objective functions
[ 21—23]

.In the published li terature

on multi-objective evolut ionary algori thms , the

st reng th Pareto evolutionary algo rithm (SPEA)[ 24]

has showed good comprehensive performance.SPEA
algorithm introduces eli tism by explicit ly maintaining

an external population.At every generation , new ly

found nondominated solutions are compared with the

existing ex ternal populat ion and the resulting non-
dominated solut ions are preserved.

The st rength Pareto evolutionary algorithm is

out lined in Fig .1.Its basic procedure is as follow s:
(i)Creating new populations and marking non-domi-
nated individuals , the ex ternal Pareto set is updated.
(ii)If the number of ex ternally stored Pareto solu-
tions exceeds a given maximum , a reduced represen-
tation is computed by clustering .(iii)Select next

generation individual f rom population and ex ternal

archive by binary tournament strategy .(iv )
Crossover and mutation are applied to the populat ion

as usual.For mo re not ions on the strength Pareto
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evolutionary algorithm , please refer to Ref.[ 24] .

Fig.1.　Flow chart of the st rength pareto evolutionary algorithm.

In the next section , carriers chaot ic search is in-
troduced into st reng th Pareto evolutionary algo rithm

to get more non-dominated solutions and improve the

g lobally searching performance of algorithm.Details
of the multi-objective carrier chaotic evolutionary al-
go rithm will be described.

2.3　Mult i-objective carrier chao tic evolutionary al-
go rithm

In this study , chaotic search is merged into the

strength Pareto evolutionary algori thm , and a multi-
objective carrier chaotic evolutionary algorithm (MC-
CEA)for designing DNA sequences is developed.In
each generat ion of M CCEA algo rithm , carrier chaotic
search is perfo rmed on the copy of several individuals

chosen randomly f rom the external archive to obtain

new non-dominated solutions.More non-dominated

solut ions are produced by ergodic regularity of chaos.
Furthermo re , due to the characterist ics of the ergod-
icity , randomicity and regularity of chaos , the algo-
rithm also escapes f rom the local optimal solution.
The detailed procedure of the algorithm is given as

follow s:

Step 1.(Initialize population)Create new popu-
lation.

Step 2.(Mark non-dominated individuals)Mark

nondominated individuals.All non-dominated indi-
viduals in the population are copied to ex ternal

archive.

Step 3.(Reduce Pareto set)If the number of

ex ternally archive Pareto solutions exceeds a given

maximum , reduce the non-dominated set in ex ternal

archive by clustering , o therwise go to step 4.

Step 4.(Binary tournament selection)Select

nex t generation individual f rom population and ex ter-
nal archive by binary tournament st rategy.

Step 5.(Crossover and mutat ion) Execute

crossover operator and mutation operato r for popula-
tion selected.

Step 6.(Update external archive)update ex ter-
nal archive.

Step 7.(Carrier chaotic search)Select individu-
als random ly from external archive , then perform

chaot ic search on the copy of select individuals , obtain
new nondominates solutions , and update ex ternal

archive.　　
Step 8.(Termination)If the termination condi-

tion is not true , go to step 2 , otherwise , go to step 9.

Step 9.End.

3　Simulation results

3.1　Algorithm parameters

In the above section , the mult i-objective carrier

chaot ic evolut ion algorithm is proposed to select good

DNA sequences.In the simulation , DNA sequences

of length 20-mer are considered , and the bases “A ,
C , G , T” are mapped to 0 , 1 , 2 , 3 , respectively.In
this way , a DNA sequence can be represented by a

decimal number corresponding to this number.For
example , a 20-ber DNA sequence CTAGCTA-
GAACGCGCTTCTT can be represented by the num-
ber sequence 13021302001212133133.

Multi-objective carrier chao tic evolutionary alg o-
rithm is implemented with MA TLAB 7.0.The alg o-
rithms parameters used in our example are:the popu-
lation size is 100 , the maxgeneration number is 200 ,
DNA sequence leng th is 20 , probability of crossover

and mutat ion rate is 0.7 and 0.03 , respectively , salt
concentration is 0.1 mol/ L , and the max number of

external non-dominated set is 50.

3.2　Results and analy ses

In the simulation , the generated sequences and

thei r objective values such as Hamming distance ,
Continuity , GC content , and so on , are listed in

Table 1.The sequences and objective values in Table

2 are generated by Soo-Yong Shin' s algo rithm[ 16] .
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Table 1.　DNA sequences and objective values in MCCEA algo rithm

DNA sequences
Hamm
distance

Reverse
distance

Reverse

complement

distance

GC content Continuity Tm

TGAGCCGGAGTGTCAGGAAG 14 12 13 60 0 64.0122

CCGTCTGGACGTAGTAAGCT 13 12 13 55 0 61.9622

GGATGGAATGGAGAGCCGTA 12 13 12 55 0 61.9622

CTAGCTAGAACGCGCTTCTT 13 12 13 50 0 59.9122

AACCGCACAAGTCGCAATAT 13 13 12 45 0 57.8622

GTCTGACAGTACGAGACCGC 12 12 12 60 0 64.0122

GTTAGTTCCGAACC TCAGCG 14 12 12 55 0 61.9622

Table 2.　DNA sequences and objective values in Soo-Yong Shin' s algorithm

DNA sequences
Hamming

distance

Reverse

distance

Reverse
Complement

distance

GC content Continuity Tm

CTTCGCTGCTGATAACCTCA 11 10 11 50 0 59.9122

ATCGTACTCATGGTCCCTAC 11 10 12 50 9 59.9122

GAGTTAGATGTCACGTCACG 15 14 13 50 0 59.9122

AGGCGAGTATGGGGTATATC 14 12 13 50 16 59.9122

TTATGATTCCACTGGCGCTC 13 13 11 50 0 59.9122

CGCTCCATCCTTGATCGT TT 11 13 13 50 9 59.9122

CCTGTCAACATTGACGCTCA 11 11 14 50 0 59.9122

Fig.2.　Comparison of average object ive values between Shin' s
and MCCEA.

　　To evaluate the performance of algori thm , the
averages of objective values f rom Tables 1 and 2 are

calculated , which are show n in Fig.2.Where the

blue columns deno te the averages calculated f rom

Table 1 , and the brown columns denote the averages

calculated f rom Table 2.From Fig.2 , we can f ind

that the DNA sequences generated by multi-objective
carrier chao tic evolutionary algori thm have g reater

(reverse)Hamming values than the DNA sequences

from Ref.[ 16] .It implies that DNA sequences gen-
erated by our algo rithm are mo re nonsimilar , and can

reduce the probability to hybridize w ith i ts noncom-

plementary sequences. Furthermo re , the second

st ructure of the DNA sequences generated by our al-
gori thm is more restrained because of the low cont i-
nuity.In general , the DNA sequences generated by

our alg orithm have better quality than that generated

by Soo-Yong Shin' s algorithm[ 16] .

4　Conclusions

In this paper , a multi-objective carrier chaotic

evolut ionary algo rithm has been developed , and is

used to produce good DNA sequences for DNA com-
puting.The simulation results show that our alg o-
rithm is efficient to generate a set of DNA sequences

w ith good quality.Although the multi-objective carri-
er chaot ic evolutionary algorithm looks simple and

rough , it already has many advantages , fo r example ,
it is easy to produce a set of alternate solutions and is

no t necessary to give w eight values.The multi-objec-
tive carrier chaotic evolutionary algorithm deserves to

be further investigated.

DNA sequences design problem is important not

only in DNA computing but also in biology .Further
research is necessary , and much wo rk needs to be

done in the future , such as developing more accurate

practical model formulations , and more ef ficient alg o-
rithms.
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