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Abstract

DNA computing is a new vista of computation. which is of biochemical type. Since each piece of information is encoded

in biobgical sequences, their design is crucial for successful DNA computation. DNA sequence design is involved with a number of design

criterias which is difficult to be solved by the traditional optimization methods. In this paper, the multi-objective camier chaotic evolution

algorithm (MCCEA) is introduced to solve the DNA sequence design problem. By merging the chaotic search base on power function car-

riex a set of good DNA sequences are generated. Fuithemore the simulation results show the efficiency of our method.
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DNA computing is a new computation paradigm,
where the information is encoded by DNA sequences.
In 1994, Adleman'" firstly demonstrated the feasibil-
ity of solving NP-complete problems by DNA
molecules. Because DNA computing has many good
characteristics such as massive parallelism, exception-
al energy efficiency, and huge storage density, DNA
computing has been extensively investigated, for ex-
ample it has been used to solve NP-complete prob-
lems > ¥, Since the information in DNA computing
is encoded by DNA sequences the design of DNA se-
quences is crucial for successful DNA computation.
For a set of DNA sequences being effective in DNA
computing, they must fulfill a number of combinato-
rial and thermody namic constraints, which is difficult
to be solved by the traditional optimization methods.

Many researchers have proposed various algo-
rithms and methods for the reliable DN A sequence de-
sign. For example, M arathe et al.!? proposed a dy-
namic programming approach; Frutos et al.”~ pro-
posed a template strategy to select a huge number of
dissimilar sequences; Aritha et al.!” introduced ge-
netic algorithm into DNA sequences design system
and proposed a random generate-and-test algorithm;
Tanakaet al.'® applied simulated annealing to opti-
mize the set of DNA sequences; Deaton et al.'” pro-

DNA computing, carrier chaotic search. multi-objective evolutionary al gorithm. DNA sequences design.

posed DNA sequences design algorithm based on evo-
lutionary search method; Cui et al. L proposed DN A
sequences design algorithm based on the PSO opti-
mization; Wang et al.''? developed GA/SA algo-

rithm for DNA sequences design.

Chaos is a universal nonlinear phenomenon, and
has the characteristics of the ergodicity, randomicity
and regularity. In this paper. the carrier chaotic
search was merged into multi-objective evolutionary
algorithm, and a multi-objective carrier chaotic evolu-
tionary algorithm (MCCEA ) for designing DNA se-
quences was developed. In each generation of M C-
CEA algorithm, carrier chaotic search was performed
on the copy of several individuals chosen randomly
from the external archive to obtain new non-dominat-
ed solutions. More non-dominated solutions were pro-
duced by ergodic regularity of chaos. Compared with
the traditional algorithm, such as PSO algorithm!'",
GA/SA algorithmsl B and weight methods '”, our
algorithm not only avoids the difficulty of selecting
the proper weight values for each criterion and escap-
ing from local optimal solution, but also produces a
set of alternative solutions but a single optimal solu-
tion. The simulation results show that the compre-
hensive performance of multi-objective carrier chaotic

evolutionary algorithm is improved by merging chaos

* Suppoited by National Natural Science Foundation of China (Grant Nos. 60373089, 60674106, 30570431, and 60533010), the Program for
New Century Excellent Talnts in Univesity (Grant No. NCET-050612), the Ph. D. Programs Foundation of Ministry of Education of China (Grant
No. 20060487014)), and the Chenguang Program of Wuhan (Grant No. 200750731262)

%% To whom correspondence should be addressed. E-mail: Iqgpan @mail. hust. edu. cn



1516 www. tandf. co. uk/ journals

Progress in Natural Science  Vol. 17 No. 12 2007

in MOEA algorithm.

1 Constraints formulation in DNA sequences
design

In DNA computing, DNA sequences should not
form any undesired secondary structures and must
meet some physical, chemical and logical constraints
in order to avoid mishybridization. Generally, the
constraints such as H-measure, continuity, melting
temperature, and GC content, need to be considered
in the design of good DNA sequences. In this section,
first the various constraints for DNA sequences de-
sign will be described in detail. Then DNA sequences
design problem will be formulated as a multi-objective
optimization problem .

In the following context, x; (1<<i<<m ), x; (1
<j<<m ) are used to denote the DN A sequences with
length n, and m is the cardinality of a set of DNA
sequences. For convenience, DNA sequence x is ori-
ented from 5 to3' end. and the reverse orientation is
the 3' to 5'. Waston-Crick complement of a sequence
x is denoted by x, and x" denotes the reverse se-
quence of sequence x.

1.1 Design constraints

1.1. 1

Hamming distance constraint

Hamming distance H (x;, x;) of two DNA se-
quences x; and x; is the number of corresponding
places where two characters are different. In DNA
sequences design, Hamming distance will ensure that
each sequence is as nonsimilar as possible. The evalu-
ation function fj,, (i) of the Ham ming distance con-
straint is defined as

S () = {H(xi x;)} (D

_min
I=<j=m,j7i

1.1.2 GC content constraint

The GC content is the percentage of G and C in
a DNA sequence. GC content affects the chemical
properties of DNA and can reduce the probability of
occurring non-specific hybridization effectively. The
evaluation function f¢c (x;) of the GC content con-
straint is described as follow s:
foe () = [6Cn(x)—GCu(x]” (D
where GCiy (x;) is the target GC content of DNA se-
quence x; and GC,, (x;) is the GC content of the
generated sequence.

1.1.3 Tm constraint

Melting tem perature is one of the most impor-
tant factors for the DNA sequence design. There are
many methods to calculate melting temperature such
as the GC% method ', and the nearest neighbor
mode' '* . We use the GC% method to calculate melt-
ing temperature in this study. The evaluation func-

tion frm(x;) of melting temperature is defined as

f’l‘m(xi): [Tmlar(xi)_ngen<xi )] : 3)

+41% cc%—% )

where Tm iy is the target melting temperature, and
Tmgen is the target melting temperature of the gener-
ated sequence x;, [ salt] is salt concentration and

| x;| is the length of DNA sequence X;.
1.1.4 Reverse constraint

R
The Hamming distance H (x;, x; ) between x;

R .
and x; should not be lower than a given parameter.
The formulation f., (x;) of the reverse constraint is

defined as follow s Hl :

Sre(x) = min (H(x,s x})) (5)

I=j=m
1.1.5 Continuity constraint

In a sequence, if the same bases occur continu-
ously, it may cause unexpected biological structures.
Continuity is often used to describe the degree of suc-
cessive occurrence of the same base in a sequence.

The formulation is defined as follows' 9 :

an(z): Efcnn(xi)’ fmn(X)
i=1
L—t+1

— DI T(Clx i ) (6)

i=1 a€A

¢, if there is ¢ such that x; 7 «
X[+j: A, fOrlgng,
X i1 7

0, otherwise

TG, j) —{(l):

where C, (x, i) is the number of the ith base « oc-

Ca()Cy l>:

P,

if i> )

otherwise

curring continuously in DNA sequence x, and ¢ is the
target continuity .



Progress in Natural Science Vol 17 No. 12 2007 www. tandf. co. uk/ journals 1517

1.1.6 Reverse complement constraint

Reverse complement constraint can reduce the
probability of occurring non-specific hybridization
with the reverse-complement of other sequences. The
formulation fgre (x;) of reverse complement con-

straint is defined as

fre(x) = min { H(xi %)) 9

1.2 Multi-objective problem for DN A sequence de-
sign

DNA computing relies on biochemical reactions
of DN A molecules and may result in incorrect or un-
desired secondary structures. Therefore, DNA se-
quences must meet some physical, chemical and logi-
cal constraints in order to avoid mishybridization.
Generally, the constraints such as H-measure, conti-
nuity, melting temperature, and GC content, need to
be considered and each constraint function needs to be
optimized simultaneously. Obviously, the optimiza-
tion problem of the constraint function can be formu-
lated as multi-objective optimization problem. For-
mally, the DNA sequences design problem can be
w ritten as follows;

Optimize
{fHam(xi )’ fﬂev(x[)7 fCC(xi )7
fcon(x,-),me(xi),fRC(x,-)} (10)

The next section will describe in detail how to
solve the multi-objective problem for DNA sequence
design by multi-objective carrier chaotic evolutionary

algorithm .

2 Multi-objective carrier chaotic evolution-
ary algorithms

2.1 Carrier chaotic optimization

Chaos is a kind of nonlinear phenomenon that
widely occurs in nature. Because of the characteristics
of chaotic motion such as the ergodicity, randomicity
and regularity, the chaotic optimization can get rid of
the local optimal solution. So the chaotic search has
been introduced into the various optimization algo-
rithms such as chaotic neural network!'?, chaotic
simulated annealing algorithm[ ", and mutative scale

U1 In this papers we

chaotic optimization algorithm
will introduce chaotic search into the multi-objective
evolutionary algorithm, which is used to solve DNA

sequence design problem .

The mathematical expression of the logistical
mapping is given as follows:
Xkt = PX x, (17— x,), form= 0,1, -
®e0.4, x, €[01] an
where ! is the growth rate, and xis the initial val-

ue. If #=4, the system is of fully chaotic state.

The Logistic mapping has the advantage of er-
godicity, but the probability density of logistic map-
ping orbit distributes ununiformity, and chaos search-
es mainly on the edge of the searching field. So power
function carrier is proposed as follows:

X if x, €10 4q]
z, =4 x,» if x, €[a b (12)

X, i x, €[b ]
where 0 a< b1, 0 p<<1, ¢> 1, x, is the
chaotic variable produced by Eq. (11), and z, is a

new chaotic variable produced by power function. In
this study, @ is 0.35, b is0.7, pis 0.6, and ¢ is
3.

Obviously, z, also has the characteristics of the
ergodicity in [ 0, 1], and it is proved that the power
function carrier can greatly enhance the global and lo-

cal searching ability of the chaotic optimization *% .

2.2 Multi-objective evolutionary algorithm

Evolutionary algorithms have been proved to be
well suited for optimization problems with multiple
I T published literature

objective functions
evolutionary algorithms  the
%)

on multi-objective
strength Pareto evolutionary algorithm (SPEA)!
has showed good comprehensive performance. SPEA
algorithm introduces elitism by explicitly maintaining
an external population. At every generation, newly
found nondominated solutions are compared with the
existing external population and the resulting non-
dominated solutions are preserved.

The strength Pareto evolutionary algorithm is
outlined in Fig. 1. Its basic procedure is as follows:
(i) Creating new populations and marking non-domi-
nated individuals, the external Pareto set is updated.
(i) If the number of externally stored Pareto solu-
tions exceeds a given maximum, a reduced represen-
tation is computed by clustering. (iii) Select next
generation individual from population and external
Civ )

Crossover and mutation are applied to the population

archive by binary tournament strategy.

as usual. For more notions on the strength Pareto
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evolutionary algorithm, please refer to Ref. [24] .
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Fig. 1. Flowchart of the strength pareto evolutionary algorithm.

In the next section, carriers chaotic search is in-
troduced into strength Pareto evolutionary algorithm
to get more non-dominated solutions and improve the
globally searching performance of algorithm. Details
of the multi-objective carrier chaotic evolutionary al-
gorithm will be described.

2.3 Multi-objective carrier chaotic evolutionary al-

gorithm

In this study, chaotic search is merged into the
strength Pareto evolutionary algorithm, and a multi-
objective carrier chaotic evolutionary algorithm (MC-
CEA) for designing DNA sequences is developed. In
each generation of M CCEA algorithm, carrier chaotic
search is performed on the copy of several individuals
chosen randomly from the external archive to obtain
new nomdominated solutions. More non-dominated
solutions are produced by ergodic regularity of chaos.
Furthermore, due to the characteristics of the ergod-
icity, randomicity and regularity of chaos the algo-
rithm also escapes from the local optimal solution.
The detailed procedure of the algorithm is given as

follow s;

Step 1. (Initialize population) Create new popu-
lation.

Step 2. (M ark non-dominated individuals) Mark
nondominated individuals. All non-dominated indi-
viduals in the population are copied to external
archive.

Step 3. (Reduce Pareto set) If the number of
externally archive Pareto solutions exceeds a given
maximum, reduce the non-dominated set in external

archive by clustering, otherwise go to step 4.

Step 4.

next generation individual from population and exter-

(Binary tournament selection) Select

nal archive by binary tournament strategy.

Step 5. (Crossover and mutation ) Execute

crossover operator and mutation operator for popula-
tion selected.

Step 6. (Update external archive) update exter-

nal archive.

Step 7. (Carrier chaotic search) Select individu-
als randomly from external archive, then perform
chaotic search on the copy of select individuals, obtain
new nondominates solutions, and update external

archive. o o _
Step 8. (Termination) If the termination condi-

tion is not true, go to step 2, otherwise, go to step 9.
Step 9. End.
3 Simulation results

3.1 Algorithm parameters

In the above section, the multi-objective carrier
chaotic evolution algorithm is proposed to select good
DNA sequences. In the simulation, DNA sequences
of length 20-mer are considered, and the bases “A,
C, G, T” are mapped to0, 1, 2, 3, respectively. In
this way, a DNA sequence can be represented by a
decimal number corresponding to this number. For
example a 20-ber DNA sequence CTAGCTA-
GAACGCGCTTCTT can be represented by the num-
ber sequence 13021302001212133133.

Multi-objective carrier chaotic evolutionary algo-
rithm is implemented with MA TLAB 7.0. The algo-
rithms parameters used in our example are: the popu-
lation size is 100, the maxgeneration number is 200,
DNA sequence length is 20, probability of crossover
and mutation rate is 0. 7 and 0.03, respectively, salt
concentration is 0.1 mol/ L, and the max number of
external non-dominated set is 50.

3.2 Results and analy ses

In the simulation, the generated sequences and
their objective values such as Hamming distance
Continuity, GC content, and so on, are listed in
Table 1. The sequences and objective values in Table
2 are generated by Soo-Yong Shin’ s algorithm! a9
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Table 1. DNA sequences and objective values in MCCEA algorithm
H R Reverse
DN A sequences Jamm everse complement  GC content Continuity Tm
distance distance .

distance
TGAGCCGGAGTGTCAGGAAG 14 12 13 60 0 64.0122
CCGTCTGGACGTAGTAAGCT 13 12 13 55 0 61.9622
GGATGGAATGGAGAGCCGTA 12 13 12 55 0 61.9622
CTAGCTAGAACGCGCTTCTT 13 12 13 50 0 59.9122
AACCGCACAAGTCGCAATAT 13 13 12 45 0 57.8622
GTCTGACAGTACGAGACCGC 12 12 12 60 0 64.0122
GTTAGTTCCGAACCTCAGCG 14 12 12 55 0 61.9622

Table 2. DN A sequences and objective values in Soo-Yong Shin' s algorithm
Hammin Rever: Reverse
DN A sequences & J everse Complement  GC content Continuity Tm
distance distance .

distance
CTTCGCTGCTGATAACCTCA 11 10 11 50 0 59.9122
ATCGTACTCATGGTCCCTAC 11 10 12 50 9 59.9122
GAGTTAGATGTCACGTCACG 15 14 13 50 0 59.9122
AGGCGAGTATGGGGTATATC 14 12 13 50 16 59.9122
TTATGATTCCACTGGCGCTC 13 13 11 50 0 59.9122
CGCTCCATCCTTGATCGTTT 11 13 13 50 9 59.9122
CCTGTCAACATTGACGCTCA 11 11 14 50 0 59.9122

To evaluate the performance of algorithm, the plementary sequences. Furthermore, the second

averages of objective values from Tables 1 and 2 are
calculated, which are shown in Fig. 2. Where the
blue columns denote the averages calculated from
Table 1, and the brown columns denote the averages
calculated from Table 2. From Fig. 2, we can find
that the DN A sequences generated by multi-objective
carrier chaotic evolutionary algorithm have greater
(reverse) Hamming values than the DNA sequences
from Ref. [ 16] . It implies that DN A sequences gen-
erated by our algorithm are more nonsimilar, and can
reduce the probability to hybridize with its noncom-
14 ol

[ I MCCEA
[ Soo-Yong's

10

Average of objective values

Hamming H-Reverse

H-Reverse- Continuity
Complement

Fig. 2. Comparison of average objective values between Shin’ s

and MCCEA.

structure of the DNA sequences generated by our al-
gorithm is more restrained because of the low conti-
nuity. In general, the DNA sequences generated by
our algorithm have better quality than that generated
by Soo-Yong Shin’ s algorithm! 19,

4 Conclusions

In this paper, a multi-objective carrier chaotic
evolutionary algorithm has been developed, and is
used to produce good DNA sequences for DNA com-
puting. The simulation results show that our algo-
rithm is efficient to generate a set of DNA sequences
with good quality. Although the multi-objective carri-
er chaotic evolutionary algorithm looks simple and
rough, it already has many advantages, for example,
it is easy to produce a set of alternate solutions and is
not necessary to give weight values. The multi-objec-
tive carrier chaotic evolutionary algorithm deserves to
be further investigated.

DN A sequences design problem is important not
only in DNA computing but also in biology. Further
research is necessary, and much work needs to be
done in the future, such as developing more accurate
practical model formulations, and more efficient algo-
rithms.
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